
Collaborative Editing within the Pervasive Collaborative
Computing Environment

Marcia Perry
Lawrence Berkeley National Laboratory

One Cyclotron Road
Berkeley, CA 94720 USA

+1 510 486 6786
MPerry@lbl.gov

Deb Agarwal
Lawrence Berkeley National Laboratory

One Cyclotron Road
Berkeley, CA 94720 USA

+1 510 486 7078
DAAgarwal@lbl.gov

ABSTRACT
Scientific collaborations are established for a wide variety
of tasks for which several communication modes are
necessary, including messaging, file-sharing, and
collaborative editing. In this position paper, we describe
our work on the Pervasive Collaborative Computing
Environment (PCCE) which aims to facilitate scientific
collaboration within widely distributed environments.
The PCCE provides a persistent space in which
collaborators can locate each other, exchange messages
synchronously and asynchronously and archive
conversations. Our current interest is in exploring
research and development of shared editing systems with
the goal of integrating this technology into the PCCE.
We hope to inspire discussion of technology solutions for
an integrated approach to synchronous and asynchronous
communication and collaborative editing.

Keywords
Collaborative editing, file sharing, synchronous
messaging, asynchronous communication

INTRODUCTION
Collaborative opportunities within the scientific
community span the gamut from highly structured and
scheduled meetings to informal and spontaneous
interactions. The goals of scientific collaborations vary
widely and can include such tasks as analyzing data sets
and results from high energy physics experiments,
coordinating local or remote equipment control, tracking
workflow of remote job submissions, developing and
debugging source code, and co-authoring publications.
Researchers may be located within the same facility or
organization or distributed across multiple domains, and
collaboration can take place from different host
environments varying from the user’s desktop at his or
her work site to a laptop or borrowed computer while
traveling or at a conference. With the emergence of grid
computing environments[8], collaborations between

widely distributed participants are becoming increasingly
common. Communication modes also vary from
globally-scoped meetings and presentations via
videoconferencing to synchronous discussions via instant
messaging to asynchronous email exchanges.

Sharing documents is essential and at times it is the
primary focus of a collaboration, but the means by which
this is accomplished can vary considerably. Sometimes it
is sufficient to read other’s publications by viewing or
downloading documents from web sites, perhaps with a
discussion held over the telephone or email. Other times
several people need to edit a shared document that is
forwarded from author to author or accessed from a
central repository. However certain situations call for
simultaneously editing or annotating a shared file in real
time.

In order to facilitate a variety of tasks within scientific
collaborations, we have been researching and developing
the Pervasive Collaborative Computing Environment
(PCCE), which aims to provide a flexible environment
that supports continuous or ad hoc interactions between
widely distributed collaborators[1, 2]. The PCCE targets
daily tasks such as synchronous and asynchronous
messaging, file sharing and collaborative editing within a
persistent and secure space. Additional goals are to offer
a cross-platform and easy to use system and leverage
existing tools and technologies as much as possible. We
have developed and deployed the LBNLSecureMessaging
system as the presence and messaging component of the
PCCE. Our next goal is to support shared editing
capabilities to further facilitate scientific collaboration.
The next sections will discuss the LBNLSecureMessaging
system and suggest ways in which collaborative editing
might be integrated into the PCCE. We hope to inspire
discussion of solutions for an integrated approach to
group discussion and synchronous and asynchronous
group editing.

 1

THE PERVASIVE COLLABORATIVE COMPUTING
ENVIRONMENT
The Pervasive Collaborative Computing Environment
(PCCE) is being developed at LBNL as a flexible and
seamless collaboration environment to support a
continuum of collaborative interactions. It aims to
provide a persistent space within which users can locate
each other, exchange messages, share documents, and
hold videoconferences. It is leveraging existing and
recently proposed technologies and tools such as Internet
Relay Chat [7], electronic notebooks, WebDAV[13], and
whiteboard, video, and audio tools.

Within the PCCE, the LBNLSecureMessaging component
has been developed and deployed as a secure presence
and discussion environment to allow collaborators to
locate each other, determine availability, and exchange
messages synchronously or asynchronously. Within this
system users can hold group or one-to-one conversations
on an on-going or ad hoc basis. These conversations may
be public and open to anyone who is on-line or they may
be private and open only by invitation. All conversations
take place within venues, which may be permanent or
temporary. Permanent venues exist regardless of
membership whereas temporary venues only exist while
at least one person is present. Any venue may be made
public or private by “opening the door” or “closing the
door.” To initiate a one-to-one conversation, users create
a temporary private venue to which they invite someone
else. The conversation can be extended to a larger group
by its members’ making the venue public or explicitly
inviting others. Users may participate in multiple
discussions simultaneously and they may leave notes for
others who are on-line or off-line.

In order for users to easily locate each other and
rendezvous, presence information is provided about
people and venues. User information includes the
person’s name, nickname, email address, affiliation with
one or more collaboration groups, and organization
(including division and position within the organization).
Additional information includes the user’s location
(“work,” “home,” or “mobile”), availability (“offline,”
“available,” “busy,” or “away”), and the venues of which
he or she is a member. Users can sort their views of this
information by different categories and they may
dynamically create and maintain a list of “My Favorite
People” that can be used to automatically accept or
decline invitations, depending on availability. Venue
information includes the name, mode (permanent or
temporary, public or private), membership, and topic.

Figure 1 depicts the main window with presence
information. Note that users may run multiple instances
of themselves and the local instance is indicated by an
asterisk added to the user’s name. For example, “marcia”
is the local user whose screen shot from her desktop at

work is shown while “marcia_2” is at a conference but
connected from her laptop computer. In color, the icons
to the left of people’s names are green, yellow, orange,
and red to denote “available,” “busy”, “away,” and
“offline,” respectively. Users may disconnect or change
the status of remote instances of themselves from their
local interface. The icon next to the “Notes” menu
indicates there are notes which can be read, replied to, or
deleted. Figure 2 shows a venue window in which a
private conversation is taking place.

 Figure 1: The LBNLSecureMessaging Main Window

 Figure 2: A Venue Window

Our implementation follows a client-server model that
supports authentication and encryption of messages

 2

exchanged over the network. We modified a public
domain IRC server (IRCD hybrid) to replace its TCP
sockets with SSL connections. We developed a custom
PCCE server to provide persistence (e.g., unique
nicknames and permanent venues) and enhanced presence
information independent of any single chat server. To
restrict access to known collaborators, pre-registration
and login are required. The PCCE server stores
registration information in a local database and uses this
information to make authorization decisions (e.g., who
can connect to the IRC server, who can leave and receive
notes, and who can perform administrative operations).

Access to the environment is from a Java Swing interface
that can be run continuously from the desktop for long-
standing collaborations or launched for a short duration
from a more mobile device such as a laptop computer.
After having registered with the PCCE server (through
either a system administrator or a registered user with
administrative privileges), users log onto the system from
the graphical user interface with either an X.509
credential or username and password. Users who
authenticate with a certificate are granted extended
capabilities (e.g., the ability to create new user accounts
and permanent venues). Both the IRC and PCCE servers
use only SSL connections and have their own X.509
certificates which are presented to each other and to
clients.

The PCCE architecture is shown in Figure 3.

1 – SSL
connection
established

4 - Login

5 - User is/is not
authorized to
join

PCCE Server
Presence Information

Control
Asynchronous Messaging

Authentication &
Authorization

IRCD
Standard IRC chat

server

Client GUI
(Java Swing application)

4

5

3, 7

2 – Send status

1, 6

2, 6

3 – SSL
connection
established

6 – Open SSL
connection for presence
info and asynchronous
messaging

7 – Open SSL
connection for
synchronous
messaging

 Figure 3: The PCCE Architecture

The asynchronous messaging, presence information,
remote control, and authorization services are components

of the PCCE server (on the upper left). IRCD (on the
upper right) implements the text-based synchronous chat
messages using the IRC protocol. The client Java Swing
graphical user interface is shown at the bottom as “Client
GUI.” A client starts the LBNLSecureMessaging
interface and first establishes an SSL connection to the
PCCE server to log into the authentication and
authorization service, which verifies the validity of the
identifying information against its database. If the login
is successful, the PCCE server sends the current status
including information about permanent venues, registered
users, and availability of online users. The client then
connects to the IRC server which queries the PCCE server
about the user’s authorization. If access to the chat
facility is granted, all other users are sent the client’s
presence information and the client’s connections to both
servers are kept open to facilitate messaging and
notification. All synchronous chat messages go directly
to the IRC server, which forwards them to the targeted
recipients through the established connections. The
PCCE server sends notifications over established
connections to the clients so that users can update their
views of the collaboration group as other people join,
change availability status, and leave.

INTEGRATING COLLABORATIVE EDITING
Our vision is to extend the PCCE to support file-sharing
and collaborative editing. The sort of scenario we would
like to support, is illustrated in the following example.
Recently we and two other people were writing a
publication using a word processing program. Three
authors were in the same building at LBNL (but in
different offices and on different floors) and one author
was in Virginia. We used the word processor’s change
tracking mechanisms to mark changes to the paper and
the LBNLSecureMessaging tool to discuss and coordinate
changes to the content of the paper.

After each author completed her changes, she would e-
mail the changes to the rest of the group for review and
possible integration. The next author would then review
and accept or reject changes and he would begin the next
round of changes. Using this methodology, the email
became the versioning system and the change tracking
became the means of comparing versions. This method of
shared editing worked better than anything we have had
in the past but still broke down at several points. For
instance, there were several times when multiple authors
wanted to work on the document concurrently. In these
cases we negotiated a crude manual locking protocol
which involved simply agreeing which sections each
author was to edit. We also encountered cases where two
authors simultaneously decided to work on the paper but
did not inform each other of this fact. This often resulted
in conflicting or redundant edits and one of the authors
had to manually merge the two versions. In addition, the

 3

change tracking caused problems in the document unless
each author accepted all the preceding changes.

If some mechanism for collaborative editing were
integrated into the PCCE, we could have avoided the
back-and-forth emailed attachments and confusion over
whose turn it was to make or merge changes.

It is our experience that collaborative editing sessions
often transition between synchronous and asynchronous
interactions. Change tracking and a file checkout
mechanism such as CVS can reasonably support purely
asynchronous collaborative editing. But, synchronous or
semi-synchronous editing requires a broader set of
capabilities. Ideally a collaborative editing system would
allow synchronous users a range of interaction
capabilities during the editing process. These could
include locking of sections of the document, a single
unified view of the combined edits, ability to propose
alternatives for a change, make comments on a change,
randomly join and leave a collaborative editing session,
and continue to edit the document during periods of
disconnection from the network.

We could enhance our client interface to include controls
for functions such as dropping documents into venues and
opening them for reading and/or writing. The PCCE
server’s authorization service could be extended to
control access to the shared files. For example,
documents placed in public venues could be read-only
while candidates for collaborative editing could be placed
in private venues to which only authorized users would be
granted write permission. Since the PCCE server now
receives and forwards control messages it could be further
utilized to interface with a shared editor.

Indeed several file-sharing and collaborative editing
technologies and tools are available, such as Lotus
Notes[6], WebEx[14], Zope[9], Wikis[15], CVW[4],
Groove[10], BSCW[3], and Microsoft Word’s support of
document sharing via NetMeeting, to name just a few.
However, many of these tools are proprietary, platform-
specific, or tightly coupled with a specific chat tool.
Others are centered around web site development or can
only be accessed through a web browser. Although
browser-based solutions offer ubiquity and platform
independence, rich functioning, “heavy” clients may be
more suitable as standalone GUI applications, especially
with respect to response time and window management.

Web Distributed Authoring and Versioning (WebDAV)
offers promise as a means of storing files in any format on
a web server that basically acts as a centralized repository.
Files can be uploaded from or downloaded to any
platform and they can be locked and unlocked for
synchronizing and merging document changes. Certainly
the WebDAV directory tree on the web server can

correspond to venues within the PCCE with security
offered by means of HTTPS and file system access
restrictions. However, file-locking insures taking turns
and this restricts editing to be sequential.

In contrast to WebDAV and other CVS-like systems,
replication of shared documents among multiple users
allows update notification and concurrency control
schemes that support real-time editing. Recently several
alternatives for synchronous or real-time collaborative
editing using replicated architectures have been described.
The intelligent collaboration transparency (ICT)
infrastructure is a means by which off-the-shelf single-
user editors can be converted into groupware without
source code modification. A prototype implementation
has been developed for MSWord and Gvim under MS
Windows [11]. Although many scientific researchers
write publications under Unix, usually with Latex and
Framemaker, many authors are using or switching to MS
Word from Windows or StarOffice on Unix. Allowing
simultaneous editing of Word documents with the ability
to discuss them outside of NetMeeting would be
beneficial.

Also under development is a reference implementation of
an operational transformation strategy for concurrency
control and consistence maintainance to enable
synchronous collaborative editing of metadata-rich
hierarchical content such as SGML documents[5]. Web
service developers (such as authors of Grid services) who
write and edit XML and HTML documents would
probably benefit from this approach.

Notification is used extensively in collaborative
applications to allow changes made by one user to
propagate to others. For example, chat tools such as ICQ
and LBNLSecureMessaging forward messages to targeted
recipients immediately or shortly after they are composed,
usually when the sender presses the return key or clicks a
“Send” button. The Realtime Distributed Unconstrained
Cooperative Editing (REDUCE) system uses a
notification scheme that focuses on high responsiveness
by allowing document updates to be propagated
immediately and frequently. Such an editor would
facilitate real-time editing and discussion. Document-
sharing tools such as CVS make updates known to others
when the user who has edited the file issues a specific
command such as “commit,” “update,” or “publish.” This
is usually done infrequently and after a fairly lengthy
editing session. This paradigm is useful in situations in
which individual members of development teams are
working on a shared document offline or over a long
period of time.

However, we envision a need for both approaches. One
such scenario involves group source code development in
which one user has a file checked out of a repository and

 4

locked for a long period of time to work on one set of
functions while another group wishes to edit and discuss
different sections of the code simultaneously in real time.
We recall a face-to-face meeting in which many
physicists were defining requirements for building a
collaboratory focused on a global accelerator. A mediator
recorded, assessed, and summarized the ideas expressed
by the participants. If the meeting had been online with
the distributed members connected from their work sites,
the content generated by the physicists would have
needed to be propagated to the mediator and to each other
automatically. The mediator could have transmitted her
content as it was being written or in chunks after some
delay (e.g., “publish” or “send” after each paragraph or
after a list was compiled).

A flexible framework has been developed to support
multiple notification strategies so that document updates
can be propagated in both real-time and non-real-time.
Based on this notification scheme is the Notification-
flexIble Collaborative Editing (NICE) system [12] which
is being implemented as a successor to REDUCE. This
type of group editor would facilitate the combination of
real-time and non-real-time editing depicted by the group
code development and brain-storming scenarios cited
above.

CONCLUSION
We have described our development of the Pervasive
Collaborative Computing Environment (PCCE) which
aims at supporting continuous or ad hoc communication
within scientific collaborations. We are attempting to
leverage as much as possible from existing tools and
infrastructures. Accordingly, we have implemented a
prototype presence and messaging system, the
LBNLSecureMessaging component of the PCCE, which
is based on an existing IRC server. We have modified
this server and enhanced it with persistence and security
capabilities that were needed to fulfill our users’
requirements. Our next goal is to integrate shared editing
capabilities into the PCCE. Since our users work from
different types of computers (desktops and laptops), from
different operating systems (Unix and Windows), and
from different parts of the globe, Java-based systems and
those that support both real-time and non-real-time are
very attractive. The intention of this paper is to explore
and discuss solutions for an integrated approach to
synchronus and asynchronous communication and
document sharing and editing. While CVS-type strategies
address the cross-platform issue and facilitate
asynchronous or non-real-time editing, more recent
developments in collaborative editing, based on replicated
distributed paradigms, are attractive for real-time
application sharing. We envision a hybrid scheme in
which users can choose the group editing mode
(automatic publishing of updates versus issuing specific

‘send’ commands periodically). We invite opportunities
for incorporation of existing prototypes for collaborative
editing into the PCCE environment.
Acknowledgments
This work was supported by the U.S. Department of
Energy, Office of Science, Mathematical, Information and
Computation Sciences under contract DE-AC03-
76SF0098. This paper is also available as LBNL Report
number LBNL-53769.

REFERENCES

1. Agarwal, D., Lorch, M., Thompson, M., Perry, M. A

New Security Model for Collaborative Environments,
Proceedings of the Workshop on Advanced
Collaborative Environments, Seattle,WA, June 2003.
LBNL-52894.

2. Agarwal, D., McParland, P., Perry, M., Supporting
Collaborative Computing and Interaction,
Proceedings of the Grace Hopper Celebration of
Women in Computing 2002 Conference, Vancouver,
Canada, October 2002.

3. Appelt, W., What Groupware Functionality do Users
Really Use?, Proceedings of the 9th Euromicro
Workshop on PDP 2001, Mantua, February 2001,
IEEE Computer Society, Los Alamitos.

4. Collaborative Virtual Workspace (CVW),
http://cvw.sourceforge.net/.

5. Davis, A. H., Sun, C., Lu, J., Generalizing
Operational Transformation to the Standard General
Markup Language, Proceedings of the ACM
Conference on Computer Supported Cooperative
Work (CSCW2002), New Orleans, LA, November
2002.

6. Falkner, M, Using Lotus Notes as an Intranet, John
Wiley & Sons, March, 1997.

7. Internet Relay Chat (IRC):http://www.irc.org/.
8. Johnston, W., Vision for Collaboratories and the

DOE Science Grid, Presentation at the DOE2000
Review, May 2000, Argonne, Illinois.

9. Lattier, A., Pelletier, M., The Zope Book, New Riders
Publishing, 1st edition, July, 2001.

10. Levine, J., 10 Minute Guide to Groove 2.0, Que
Publisher, June 2002.

11. Li, D., Li, R., Transparent Sharing and Interoperation
of Heterogenous Single-User Applications,
Proceedings of the ACM Conference on Computer
Supported Cooperative Work (CSCW2002), New
Orleans, LA, November 2002.

12. Shen, H., Sun, C., Flexible Notification for
Collaborative Systems, Proceedings of the ACM
Conference on Computer Supported Cooperative
Work (CSCW2002), New Orleans, LA, November
2002.

13. webdav: IETF WEBDAV Working Group,
http://ftp.ics.uci.edu/pub/ietf/webdav.

14. WebEx, http://www.webex.com/.

 5

http://ftp.ics.uci.edu/pub/ietf/webdav
http://www.webex.com/

15. WikiWikiWeb,
http://c2.com/cgi/wiki?WikiWikiWeb.

 6

http://c2.com/cgi/wiki?WikiWikiWeb

	ABSTRACT
	Keywords

	INTRODUCTION

